تابع PI اکسل – مقدار عدد پی

تابع PI اکسل – مقدار عدد پی

برای استفاده از مقدار عدد پی در اکسل از تابع PI استفاده می کنیم.

خوب شاید شما به مقدار دقیق عدد پی برای محاسبات در اکسل نیاز داشته باشید. نوشتن این عدد با چند رقم اعشار در محاسبات کاری تکرای و خسته کننده می باشد.و هدف اکسل همیشه کم کردن کارهای تکراری می باشد.برای این کار تابعی به نام  PI در اکسل معرفی شده است.

ساختار تابع PI:

=PI()

ویژگی های تابع PI اکسل:

این تابع هیچ آرگومانی و ورودی ندارد.

تا 15 رقم بعد از اعشار محاسبات را به شما نشان می دهد. یعنی 3.14159265358979

=COS(PI())

تاریخچه عدد پی:

عدد پی (π) از عددهای ثابت ریاضی و تقریباً برابر با ۳٫۱۴۱۵۹ است. عدد پی عددی حقیقی و گُنگ است که نسبت محیط دایره به قُطر آن را در هندسهٔ اقلیدسی مشخص می‌کند و کاربردهای فراوانی در ریاضیات، فیزیک و مهندسی دارد. عدد پی همچنین به ثابت ارشمیدس نیز معروف است.
عدد پی حدود چهار هزار سال پیش نیز کشف شده بود، ولی نام خاصی برای آن تعیین نشده بود و در آن زمان نمی دانستند که عدد پی، عددی گنگ است.پس از آن که مشخص شد که عدد پی، عددی گنگ است؛ اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد. این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم محیطی و یک شش ضلعی منظم محاطی استوار است.

در سال ۱۷۶۱ لامبرت ریاضیدان سوئیسی ثابت کرد که عدد پی گنگ است و نمی‌توان آنرا بصوت نسبت دو عدد صحیح نوشت. همچنین در سال ۱۸۸۲ فردیناند فون لیندمان ثابت کرد که عدد پی یک عدد جبری نیست و نمی‌تواند ریشه یک معادله جبری باشد که ضرایب آن گویا هستند (همانند عدد e). كشف گنگ بودن عدد پي، به سالها تلاش ریاضی‌دانان برای تربیع دایره پایان داد.

تربیع دایره:

يونان باستان مساحت هر شكل هندسي را از را تربيع ان يعني از راه تبديل ان به مربعی هم مساحت بدست مياوردند.از اين راه توانسته بودند به چگونگی محاسبه ی هر شكل پهلودار پي ببرند
تربیع دایره یکی از مسائل قدیمی ریاضیات است. هدف آن رسم کردن مربعی است که مساحت آن برابر با مساحت دایره‌ای داده شده، فقط با استفاده از ستاره و پرگار، باشد. تلاش در حل این مساله که ناممکن بودن آن اثبات شده، یکی از عرصه‌های اصلی فعالیت نوابیغ است. این مسئله معادل اثبات جبری بودن عدد پی است(عدد جبری عددی است که ریشه یک معادله درجه n باضرایب صحیح باشد.) پس از اثبات غیر جبری بودن عدد پی ثابت شد که این مسئله جواب ندارد.
باوجود آنکه همه ریاضی‌دانان می‌دانند که عدد پی گنگ می‌باشد و هرگز نمی‌توان آنرا بطور دقیق محاسبه کرد اما ارائه فرمول‌ها و مدل‌های محاسبه عدد پی هموار برای آنها از جذابیت زیادی برخوردار بوده‌است. بسیاری از آنها تمام عمر خود را صرف محاسبه ارقام این عدد زیبا نمودند اما آنها هرگز نتوانستند تا قبل از ساخت کامپیوتر این عدد را بیش از ۱۰۰۰ رقم اعشار محاسبه نمایند.

محاسبه عدد پی:

امروزه مقدار عدد پی با استفاده از پیشرفته‌ترین رایانه‌ها تا میلیونها رقم محاسبه شده‌است. و تعداد این ارقام هنوز در حال افزایش است. اولین محاسبه کامپیوتری در سال ۱۹۴۹ انجام گرفت و این عدد را تا ۲۰۰۰ رقم محاسبه نمود و در اوخر سال ۱۹۹۹ یکی از سوپر کامپیوترهای دانشگاه توکیو این عدد را تا ۲۰۶٬۱۵۸٬۴۳۰٬۰۰۰ رقم اعشار محاسبه نمود.

از سال ۱۹۸۸ روز ۱۴ مارس را در آمریکا روز عدد پی نام نهاده‌اند و جشن می‌گیرند. روزهای دیگری نیز برای عدد پی در دیگر کشورها تعیین شده و مراسمی برای معرفی عدد پی و اهمیت آن برگزار می‌شود.

در قرن نهم هجری، غیاث‌الدین جمشید کاشانی، ریاضی‌دان دانشمند ایرانی در رساله المحیطیه که دربارهٔ دایره نوشت، عدد پی را با ۱۶ رقم درست پس از ممیز یافت که تا صدوهشتاد سال بعد کسی نتوانست آن را گسترش دهد.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *